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Abstract— The National Synchrotron Light Source II (NSLS-
II) uses highly stable electron beam to produce high-quality
X-ray beams with high brightness and low-emittance syn-
chrotron radiation. The traditional algorithm to stabilize the
beam applies singular value decomposition (SVD) on the orbit
response matrix to remove noise and extract actions. Supervised
learning has been studied on NSLS-II storage ring stabilization
and other accelerator facilities recently. Several problems, for
example, machine status drifting, environment noise, and non-
linear accelerator dynamics, remain unresolved in the SVD-
based and supervised learning algorithms. To address these
problems, we propose an adaptive training framework based on
model-based reinforcement learning. This framework consists
of two types of optimizations: trajectory optimization attempts
to minimize the expected total reward in a differentiable
environment, and online model optimization learns non-linear
machine dynamics through the agent-environment interaction.
Through online training, this framework tracks the internal
status drifting in the electron beam ring. Simulation and real
in-facility experiments on NSLS-II reveal that our method
stabilizes the beam position and minimizes the alignment error,
defined as the root mean square (RMS) error between adjusted
beam positions and the reference position, down to ˜1 µm.

I. INTRODUCTION

NSLS-II is a third-generation storage ring producing syn-
chrotron radiation through laser-electron interactions. Elec-
trons are accelerated through a synchrotron and injected into
the storage ring. Low emittance in a light source facility
requires stable electron beam orbit [1]. Figure 1 shows a
simplified electron orbit that remains in the beam position
and emits X-ray radiation at multiple X-ray experiment
locations.

The beam operators rely on beam monitoring and control
systems to interact with orbits. In each unit of the storage
ring, beam position monitors (BPMs) measure the relative
position of the beam. Each storage ring also includes correc-
tor control to adjust beam dynamically. Ideally, the corrector
currents in orbit controls are initialized at the beginning of
experiments, and their initialization depends only on the
design of the light source facility. In reality, noise and
environmental change cause the beam to gradually drift away
from the reference position. Orbit feedback control systems
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Fig. 1. An illustration of a storage ring [2]

[3] apply corrections to corrector controls and regains the
beam reference position.

The orbit response matrix (ORM) reflects how BPMs
respond to the correction. The matrix is static and belongs
to the original machine design. In practice, beam operators
periodically measure the ORM by tuning the beam close to
the golden beam position and changing the current setting on
one corrector one by one. However, we cannot obtain precise
measurement on the ORM because of the following reasons:

1) the machine dynamics drifts slightly over time, due to
external environment influence, for example, hysteresis
of the correctors [4], room temperature;

2) Nonlinear beam; the linear approximation of the ORM
measured at the previous time incurs a large bias
in modeling the beam system that is non-linear and
evolves continuously during facility operation;

3) Environment factors, including vibration and electronic
noise, introduce measurement error (noises) in ORM.

Traditionally, SVD-based algorithms produce feedback
signals by filtering out high-frequency components in ORMs
[5]. Modern NSLS-II design for fast orbit feedback con-
trol combines SVD-based feedback control with other con-
trollers, such as PID (proportional–integral–derivative), to
ensure robust and stable beam orbits [6]. However, this
method has several limitations in practice. Empirically, a
large λ value leads to robust control to the ORM errors
while generating biased RMS values. On the other hand,
because of the machine’s internal drifting, the controller still
has a degenerated performance, even with sufficiently large
λ. Figure 2 shows that after a long time, some dimensions
will lose control even with very large λ.
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Fig. 2. A degenerated final state after a long run. The dimensions that lose control are marked in red.

We seek an adaptive feedback control system to address
this problem. Reinforcement learning (RL) is a good solution
for robots, self-driving, optimization and scheduling, and
control systems. With agent-environment interaction, the RL
agent learns the behaviors of the orbit system and captures
any machine drifting. Multi-layer Neural networks (NN) in
RL can be trained to model the non-linear dynamics of
the orbit system. However, high dimensional control with
reinforcement learning is a challenging task. Our feedback
system in NSLS-II is high-dimensional and consists of 180
inputs for BPM measurements and 180 outputs of control
systems. Therefore, we must use prior knowledge to model
the target machine and use the model to regularize RL train-
ing and overcome the curse of dimensionality. In this paper,
we design and implement an orbit feedback system based
on deep reinforcement learning and address the following
issues: (i) System drifting; (ii) Degenerated performance with
traditional SVD-based linear method; (iii) High dimensional
control with reinforcement learning. Our contributions are
summarized as follows:

1) In trajectory optimization, a model-based RL algorithm
optimizes a policy neural network. Trajectory opti-
mization targets the entire control process instead of
a single step. Consequently, the trained policy chooses
actions to ensure the stability of the future episode.
The trajectory sampling process simulates the control
process to better fit the actual operation data of the
machine. On the other hand, the optimization runs
on a differentiable surrogate model with the ideal
environment setting (i.e., no noise). This improves
policy accuracy and accelerates the training process.

2) In online model optimization, the policy network is
applied to the environment. Real-time data is collected
to train the system model adaptively. Online model
optimization targets adaptive control by interacting
with the orbit feedback system. This addresses the
problem of system drifting. The forward propagation
neural network captures the non-linear behavior of the
system with high accuracy. Moreover, the training data
for model optimization can be efficiently collected
during beam daily operations. We do not need extra
facility maintenance time for dataset collection.

3) We use the existing SVD-based method and the su-
pervised learning model as the baseline and evaluate
the model-based reinforcement learning system for the

NSLS-II feedback control. We compare their perfor-
mance with the simulation environment. Then we con-
duct real-world experiments in the NSLS-II feedback
system for additional evaluations. A neural network
with three hidden layers of size 512 is trained to run
on the NSLS-II feedback system, having 180 input and
output dimensions. Our method control stabilizes the
RMS of beam position to ˜1 µm, about 80% improve-
ment compared to the current SVD-based method. We
plan to add our RL model to the production beam
system and provide it to the operators of the NSLS-II
storage ring.

The remainder of this work is organized as follows.
Section II offers a short review of current machine-learning
methods for storage rings. Section III analyzes the orbit con-
trol challenges and explains the SVD-based algorithm and
supervised learning model. Section IV details our feedback
system based on reinforcement learning. Section V presents
simulation results and experiment outcomes on the NSLS-II
beam. Section VI presents the conclusion and future plan.

II. RELATED WORK

Deep learning and big-data-driven methods have drawn
much attention recently. The orbit feedback system is
a multiple-input-multiple-output (MIMO) feedback system.
Treating the MIMO system as a black box, the neural
network can model the inverse relationship between the
machine status (inputs) and the corrective actions (output)
with supervised learning algorithms. In [7], [8], [9], [10],
[11], [12], [13], neural networks were trained with supervised
learning algorithm based on the input and output data. The
input and output dimensions were usually less than 100.
The network was trained with simulated data and validated
with actual operating data for adapting to the real operation
environment [9]. In [10], the surrogate model was regressed
from collected operating data, and a network was additionally
trained with the surrogate model. In [11], [12], [13], real-
time-control experiments were conducted on the storage ring
to achieve low RMS errors or fast controls.

Reinforcement learning (RL) agents learn to make deci-
sions by interacting with the environment. Meier [14] trained
an actor-critic algorithm with input states and output actions
of a small dimensionality (< 10) in a storage ring simulator
to achieve real-time control. Yang [15] proposed a multi-
agent DDPG design for orbit calibration in MEBT. Apart
from storage ring stabilization, studies [16], [17], [18], [19],



[20], [21] also explored applying RL algorithm into other
accelerator facilities, for example, linear accelerator, free-
electron laser, etc.

Throughout the study, data for supervised learning is
either generated from the simulation software or collected
from historical operations. This does not fit our situation
for adaptive control. Current studies on model-free RL only
handle lower-dimension systems. However, our system has
high dimensionality. Thus, we design a model-based RL
algorithm to achieve adaptive control with high dimensions.

III. BACKGROUND

A. Problem Definition

The orbit feedback system runs in a closed control loop,
shown in Figure 3. The goal of the feedback controller is to
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Fig. 3. An illustration of the closed loop feedback system

produce an, such that sn+1 maintains below the threshold.
We use the first-order approximation to model the feed-

back control system as follows:

sn+1 = sn +Ran, (1)

where an indicates the corrections applied, sn and sn+1 are
BPMs observed before and after we apply the correction,
and R is the orbit response matrix.

B. SVD-based Feedback Control

We aim to control the next beam position sn+1 to 0. A
straightforward way is to solve for an = −R−1sn. However,
measurements of the ORM indicate the system has highly
ill-posed dynamics. With measurement errors, the inverse of
the response matrix could be extremely unstable. Singular
value decomposition (SVD) is used to inverse the problem
[5]. In NSLS-II fast orbit feedback (FOFB) control, the SVD
method combines with PID controller [6]. Specifically, the
controller is applied on each component of the spectrum
space by doing SVD on the ORM: R = UΣV T . Figure 4
illustrates this process.

Controller

Fig. 4. The SVD-based PID control: qi and zi stand for each component
of the spectrum space after the transformation of the current input.

The parameter set for the PID controller is given by (with
proportional component only)

zi = C(qi) = −
σi

σ2
i + λ

qi, (2)

where σi is the ith singular value.
This process is proven identical to ridge regression.

min
a
∥Ra+ s∥22 + λ∥a∥22. (3)

C. Supervised Learning Model

Supervised learning learns from labeled data. Several
research efforts applied supervised learning to the orbit
feedback control problems [7], [8], [9], [10], [11], [12], [13].
For our problem, we train a neural network to generate action
an given current state sn as input. In the following context,
we denote this network π(sn).

Given the dataset D ∈ Rm × Rm, the loss function for
supervised learning is

L(wπ) = E
(sn,an)∈D

∥an − π(sn)∥. (4)

1) Dataset preparation: The training dataset D can be
obtained by: (i) extracting state-action pairs directly from the
data archive of the running machine; (ii) running simulation
software to generate states randomly and using an SVD-
based algorithm to produce the corresponding action; (iii)
running forward simulations to generate random actions as
inputs and produce the subsequent states.

D. Reinforcement Learning Framework

RL aims to obtain a strategy to maximize the expected
cumulative returns by interacting with the system. A typical
RL framework comprises the tuple (S,A, r, P, γ). State
space S describes all possible running statuses of the storage
ring, and action space A specifies the action to alter the
system. Then the system can be abstracted as the probability
mapping of the next state given the current state and action,
say P (sn+1|sn, an). Given a reward function r(s, a), we
aim to find the optimal control an = π(sn), called policy
function, which maximizes the expected total reward

R(π) = E
s0

[∑
n

γnr(sn, an)

]
(5)

over the whole trajectory. Here γ is the decay parameter to
ensure the convergence of the expectation.

For the beam control problem in NSLS-II, we take the
current BPMs as S, and the control signal as action A. If
we do not involve noises and machine drifting, the system
model is deterministic and given by Equation (1).

IV. METHOD

Model-based RL algorithms optimize the expected total
reward based on the system model information. This section
explores a model-based way to optimize the policy network.

Figure 5 shows the entire process for our framework when
we run the algorithm online. The upper part of Figure 5
presents the trajectory optimization while the lower is for
online model optimization.
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Fig. 5. The data flow for model-based RL with online model optimization

A. Trajectory Optimization

The system model is given by Equation (1), which is a
differentiable model. Therefore, we can always generate a
differentiable reward function when running the policy on
this model. Leveraging the autograd engine in PyTorch, we
do not have to bother calculating the complex gradient by
hand, but collect the gradient information directly from the
trajectory sampling process.

We utilize policy gradient directly to train the policy
network. In the trajectory sampling process, we first sample
a random state s0, then iteratively calculate the new state for
time horizon N .

sn+1 = sn +Rπ(sn), n from 0 to N − 1. (6)

Then the loss function will be the negative of the total reward

L(π) = −
N−1∑
i=0

r(si, π(si)). (7)

The policy network will be updated based on∇πL. Details
are shown in Algorithm 1.

B. Online Model Optimization

Trajectory optimization pre-trains the policy network using
the given system model (1) with R. However, this R might
not be accurate and not represent the actual system behavior.
Thus, after interacting with the environment, we can update
the system model based on the collected data.

To fit the latest system model, data collection should not
happen in Algorithm 1. Instead, the policy should run in
parallel on the physical machine to collect the data point
(sn, an, sn+1) ∈ D. Then we can fit a new response matrix
through least square.

R̂ = argmin
R

E
D
∥(sn+1 − sn)−Ran∥22. (8)

The resulting R̂ is then used to replace the original R matrix
in Algorithm 1.

Algorithm 1 Policy Gradient with Trajectory Sampling
Require: The system model R, Reward function r(s, a)
Ensure: Policy π(s)

Initialize neural network π.
while total episodes less than limit do Initialize s0.

while steps less than limit N do
an ← π(sn).
sn+1 = sn +Rπ(sn).
Save sn, sn+1, an for training.
sn ← sn+1.

end while
Calculate policy loss based on expected reward.

L(wπ) = −
N−1∑
i=0

r(si, ai).

Update weight wπ based on the ∇Lwπ
.

end while

Furthermore, the system model for online training does
not have to be a linear function. In fact, the real machine
does not have linear dynamics. Thus, we train another neural
network f(sn, an) for forward system model learning. This
network is trained in a supervised learning way.

L(wf ) = ∥(sn+1 − sn)− f(sn, an)∥. (9)

The system model then becomes

sn+1 = sn + f(sn, an). (10)

f(sn, an) replaces the original system model in Algorithm 1
for further training.

V. EXPERIMENTS

We experiment on the simulation environment with SVD-
based, supervised learning, and our model-based RL meth-
ods. The trained models are tested in the NSLS-II storage
ring for further validation.

A. Experiment Setups

1) Environment Setup: In preliminary experiments, we
employ a simulated environment, which runs the system
model (1) to produce the next state. The input dimension and
output dimension are both 180. However, some features are
added to address two key properties of the actual machine:
(i) two ORMs are measured at different machine states. The
ORM used for system model will drift from one to another
over iterations; (ii) observation noises are added to the BPM
readback to simulate electronic noise.

2) Evaluation Metrics: For each algorithm, we run N
long trajectories with length m in the simulated environment.
We calculate the root mean square for each trajectory and
plot the average of the RMS with its variance across N tra-
jectories. The following performance metrics are considered:
(i) best state RMS; (ii) worst state RMS; (iii) final state RMS;
(iv) steps needed to reduce the RMS to a certain threshold.



3) Neural network details: For this problem, we will use
a deep neural network with a 180-dimension input and output
layer, and 3 hidden layers of 512 dimensions each. This gives
us approximately 0.7M parameters in total.

This particular problem has a special property of the action
taken. That is to take zero action if the state is already zero.
To fit this property, we will use unbiased linear layers (set
bi to zero), and use the hyperbolic tangent function (tanh)
as the activation function.

We use Adam [22] as the training algorithm with learning
rate 10−4. This algorithm is considered to achieve superior
performance in machine learning research. The same policy
network design, training algorithm, and initial parameters
will be used consistently throughout the experiment.

B. Simulation Experiment

We evaluate three methods with identical environment set-
tings: the SVD-based, supervised learning, and our method.
For our method, the policy network is pre-trained with
trajectory optimization before interacting with the environ-
ment. The reward function used is the negative of the RMS.
We sample 1,000 trajectories with a length of 10,000 for
simulation, and plot the mean and std across different runs.

Figure 6 displays a short trajectory period, illustrating
how our method is capable of recovering from poor ma-
chine BPMs. Our findings indicate that supervised learning
approaches are unable to reduce the state to a smaller RMS
value. This is likely due to overfitting so that the network
cannot adapt to drifting environments. Our method initially
converges slower than the SVD method. Interactions with
the environment allow the agent to acquire new information
about changes in environment dynamics, and refine its poli-
cies accordingly. Eventually, our method continues to reduce
the RMS and surpasses the SVD method.
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Fig. 6. Plot of trajectory at first 500 interactions. the solid line and shadows
show the mean and standard deviation across different dimulations

Figure 7 simulates the long-run experiments. As the sys-
tem’s dynamics change over time, other methods cannot
capture this and result in degenerated performance. For our
method, the longer it interacts with the environment, the
more robust it will be. At the final iteration, our agent
controls the beam RMS down to the machine measurement
accuracy (˜0.2 µm). Table I summarizes the key metric in the
experiment.

C. Experiments on NSLS-II System

Based on the above work, we tested our machine-learning
method directly on the storage ring beam. Due to the study
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Fig. 7. Plot of trajectory for long term run (10000 steps)

time limit, we could not do a long-run test for our method.
The online model optimization was performed once to fit
into the current machine status. The results are shown in
Figure 8.

In the experiment, we randomly kicked the beam off its
original position and applied our models to control the orbit
back. In Figure 8, the SVD-based method only stabilizes
the beam RMS to ˜5 µm, while our method reaches ˜1 µm,
showing a 80% improvement of RMS values.

VI. CONCLUSION

This study investigates the machine-learning methods for
controlling the beam in the NSLS-II storage ring. The
feedback system of NSLS-II is modeled by the orbit response
matrix. The ORM cannot be obtained precisely due to
machine internal status drift, environmental noise, and non-
linear behavior of the system. Thus, the SVD controller leads
to beam drift over time. Supervised learning is unsuitable
fr our control system because it tends to overfit and is not
adaptive to machine drift. The model-based RL algorithm
runs interactively with the environment to achieve adaptive
control. Trajectory optimization optimizes the expected total
reward using policy gradient. This approach involves using
a neural network to learn the non-linear dynamics of the
beam orbit system and extracting the optimal control signal
over the trajectory. Online model optimization adaptively
fits the current environment behavior by collecting real-time
running data of the policy. Through both simulation and
real-world experiments, our proposed method outperforms
many existing algorithms and achieves 80% improvement
compared to the current SVD-based method deployed at
NSLS-II.

The adaptive control for our method runs in an overfitting
way. That means we tried to consume as much training time
as to keep track of the system drift. It could lead to a biased
dataset for the algorithm to train on, ultimately impeding
the algorithm’s ability to learn and generalize effectively. To
mitigate this issue, we recommend collecting a significant
amount of data before starting model optimization. We
propose exploring new algorithms that allow the system to
detect performance degeneration in real-time and perform
online model optimization on demand.
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TABLE I
SUMMARY OF THE EXPERIMENT RESULT

Min RMS Max RMS Final RMS Steps to reach 0.05

SVD-Based Method 0.021 0.25∗ 0.026 532
Supervised Learning 0.12 0.35 0.16 N/A
Model-Based RL 0.00028 0.25∗ 0.00033 187

* Initial state

Fig. 8. Performance of Model-Based RL Algorithm on NSLS-II Storage Ring
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